import pandas as pd
import numpy as np
import sklearn
import pickle
import time
import datetime
import warnings
'ignore') warnings.filterwarnings(
imports
%run ../function_proposed_gcn.py
with open('../fraudTrain.pkl', 'rb') as file:
= pickle.load(file) fraudTrain
= try_6(fraudTrain, 0.2,1e7,0.96)
df_results = try_6(fraudTrain, 0.2,1e7,0.94, prev_results=df_results)
df_results = try_6(fraudTrain, 0.2,1e7,0.92, prev_results=df_results)
df_results = try_6(fraudTrain, 0.2,1e7,0.9, prev_results=df_results)
df_results = try_6(fraudTrain, 0.2,1e7,0.88, prev_results=df_results)
df_results = try_6(fraudTrain, 0.2,1e7,0.86, prev_results=df_results)
df_results = try_6(fraudTrain, 0.2,1e7,0.84, prev_results=df_results)
df_results = try_6(fraudTrain, 0.2,1e7,0.82, prev_results=df_results)
df_results = try_6(fraudTrain, 0.2,1e7,0.80, prev_results=df_results)
df_results = try_6(fraudTrain, 0.2,1e7,0.78, prev_results=df_results)
df_results = try_6(fraudTrain, 0.2,1e7,0.76, prev_results=df_results)
df_results = try_6(fraudTrain, 0.2,1e7,0.74, prev_results=df_results)
df_results = try_6(fraudTrain, 0.2,1e7,0.72, prev_results=df_results)
df_results = try_6(fraudTrain, 0.2,1e7,0.7, prev_results=df_results)
df_results = datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d-%H%M%S')
ymdhms f'../results/{ymdhms}-proposed.csv',index=False)
df_results.to_csv(
df_results
model | time | acc | pre | rec | f1 | auc | graph_based | method | throw_rate | train_size | train_cols | train_frate | test_size | test_frate | hyper_params | theta | gamma | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | GCN | None | 0.969499 | 0.908387 | 0.941806 | 0.924795 | 0.989259 | True | Proposed | 0.2 | 22522 | amt | 0.200293 | 7508 | 0.199121 | None | 10000000.0 | 0.96 |
1 | GCN | None | 0.965503 | 0.901242 | 0.935525 | 0.918064 | 0.987353 | True | Proposed | 0.2 | 22522 | amt | 0.197807 | 7508 | 0.206580 | None | 10000000.0 | 0.94 |
2 | GCN | None | 0.955115 | 0.888591 | 0.885619 | 0.887102 | 0.984401 | True | Proposed | 0.2 | 22522 | amt | 0.200293 | 7508 | 0.199121 | None | 10000000.0 | 0.92 |
3 | GCN | None | 0.958977 | 0.874307 | 0.931714 | 0.902098 | 0.983667 | True | Proposed | 0.2 | 22522 | amt | 0.199050 | 7508 | 0.202850 | None | 10000000.0 | 0.90 |
4 | GCN | None | 0.949254 | 0.850236 | 0.919057 | 0.883308 | 0.980431 | True | Proposed | 0.2 | 22522 | amt | 0.197007 | 7508 | 0.208977 | None | 10000000.0 | 0.88 |
5 | GCN | None | 0.948055 | 0.821918 | 0.938137 | 0.876190 | 0.979554 | True | Proposed | 0.2 | 22522 | amt | 0.201359 | 7508 | 0.195924 | None | 10000000.0 | 0.86 |
6 | GCN | None | 0.948189 | 0.826012 | 0.941991 | 0.880197 | 0.981559 | True | Proposed | 0.2 | 22522 | amt | 0.199316 | 7508 | 0.202051 | None | 10000000.0 | 0.84 |
7 | GCN | None | 0.928476 | 0.813968 | 0.840105 | 0.826830 | 0.972653 | True | Proposed | 0.2 | 22522 | amt | 0.198917 | 7508 | 0.203250 | None | 10000000.0 | 0.82 |
8 | GCN | None | 0.936867 | 0.810303 | 0.892523 | 0.849428 | 0.976111 | True | Proposed | 0.2 | 22522 | amt | 0.200160 | 7508 | 0.199521 | None | 10000000.0 | 0.80 |
9 | GCN | None | 0.937400 | 0.805353 | 0.898236 | 0.849262 | 0.974586 | True | Proposed | 0.2 | 22522 | amt | 0.201225 | 7508 | 0.196324 | None | 10000000.0 | 0.78 |
10 | GCN | None | 0.937134 | 0.793696 | 0.925184 | 0.854411 | 0.974375 | True | Proposed | 0.2 | 22522 | amt | 0.200204 | 7508 | 0.199387 | None | 10000000.0 | 0.76 |
11 | GCN | None | 0.923015 | 0.799333 | 0.812331 | 0.805780 | 0.968231 | True | Proposed | 0.2 | 22522 | amt | 0.201137 | 7508 | 0.196590 | None | 10000000.0 | 0.74 |
12 | GCN | None | 0.912360 | 0.774086 | 0.785570 | 0.779786 | 0.961307 | True | Proposed | 0.2 | 22522 | amt | 0.200826 | 7508 | 0.197523 | None | 10000000.0 | 0.72 |
13 | GCN | None | 0.904635 | 0.780702 | 0.747416 | 0.763696 | 0.962761 | True | Proposed | 0.2 | 22522 | amt | 0.197940 | 7508 | 0.206180 | None | 10000000.0 | 0.70 |
= try_6(fraudTrain, 0.009,1e7,0.8)
df_results = datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d-%H%M%S')
ymdhms f'../results/{ymdhms}-proposed.csv',index=False)
df_results.to_csv(
df_results